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Interaction of the Benjamin-Ono solitons 

Y Matsuno 
Department of Physics, Faculty of Science, Kyoto University, Kyoto, Japan 

Received 28 March 1979, in final form 17 September 1979 

Abstract. The interaction of the Benjamin-Ono solitons is studied in great detail employing 
the exact N-soliton solution presented by Matsuno. For the two-soliton case, the nature of 
the interaction is shown to be characterised by the ratio of the amplitudes of the two 
solitons. Furthermore the initial-value problem of the linearised Benjamin-Ono equation 
is solved analytically and the asymptotic form of the solution for large time is given. 

1. Introduction 

In a recent study of non-linear waves, much attention has been paid to the Benjamin- 
Ono (B-0) equation (Benjamin 1966,1967, Davis and Acrivos 1967, Ono 1975). The 
B-0 equation describes a large class of internal waves which occur in the atmosphere 
and the ocean and it may be written as 

where u(x ,  t )  is a scalar quantity, x is the space coordinate, t is the time and H is the 
Hilbert transform defined by 

The B-0 equation is a non-linear integro-diflerential equation unlike most of the 
well-known non-linear differential equations such as the Korteweg-deVries (KdV) 
equation and the non-linear Schrodinger equation. Because of the integral term 
(definite integral!) in the B-0 equation, the inverse scattering method (Gardner et a1 
1967, 1974), which has a strong power for some class of non-linear wave equations, 
cannot be applied to this equation as yet. 

Recently many attempts have been made to solve the B-0 equation. Joseph (1977) 
gave a two-soliton solution. Meiss and Pereira (1978) found new conserved quantities 
of equation (1.1) and surmised the existence of exact two- and three-soliton solutions. 
Chen et a1 (1979) obtained a solution which describes multiple collisions of solitons. 
Matsuno (1979) presented a rational N-soliton solution explicitly applying Hirota's 
method (Hirota 1971); this paper (Matsuno 1979) will be referred to as I hereafter. 
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Very recently Case (1979) obtained a periodic solution of the B-0 equation by 
using the pole expansion method. Satsuma and Ishimori (1979) also obtained a 
periodic solution by Hirota's method and showed that the solution is reduced to the 
rational N-soliton solution presented in I in the long-wavelength limit. 

Now the stationary solution of (1.1) is given by 

V 
U ( &  t )  = 

V 2 ( x  - v t  - + 1 (1.3) 

where V and 5 are arbitrary constants called a velocity and a phase, respectively. The 
solution (1.3) is remarkable because it is not a hyperbolic function like most known 
solutions, but instead has a Lorentzian shape. 

The interaction of N solitons was treated in I and it was shown that no phase shift 
appears as the result of collisions between solitons, unlike those which take place 
between the KdV solitons (Wadati and 'Toda 1972, Gardner et a1 1974). However, 
during the interaction itself, the process is very complicated. Therefore it seems to be 
interesting to study more details of the interaction process. This is the main purpose of 
the present paper. For the KdV equation, the interaction of two solitons has been 
studied in detail by some authors (Lax 1968, Kruskal 1974, Thickstun 1976). In 
addition, the behaviour of the tail is well known thanks to the inverse scattering method 
(Ablowitz and Newel1 1973, Ablowitz and Segur 1977). Since this method cannot be 
applied to the B-O equation as yet we must resort to other methods to study the 
structure of the tail. As a first step to attack this problem, we solve the linearised B-0 
equation and study the asymptotic behaviour of the solution for large time because the 
amplitude of the tail is so small that it may be described by the linearised B-0 equation 
in a first approximation. The interaction between solitons and the tail will be treated 
elsewhere. 

In 8 2, the summary of an exact method for solving the B-0  equation is presented 
together with the rational N-soliton solution. In 8 3, the interaction of two solitons is 
elucidated in detail using the explicit two-soliton solution. It is shown that the nature of 
the interaction is characterised by the ratio of the amplitudes of two solitons. In § 4, we 
treat the problem of the tail in the absence of solitons. Section 5 is devoted to some 
concluding remarks. 

2. Summary of an exact method 

In this section we summarise an exact method for solving the equation (1.1) (Matsuno 
1979). Since we are interested in the physical solution of the equation (1 .l), we seek a 
solution which is real and finite over all x, t and express it in the following form: 

N 

fb, II rx - x n ( t ) I  
n = l  

Im x,  > 0 n = 1,2 ,  . . . , N 

where x n ( n  = 1 , 2 , .  . . , N )  are complex functions of t and the asterisk denotes a 
complex conjugate, 
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Substituting (2.1)-(2.3) into (1.2) and performing the contour integral closed by a 
large semicircle in the upper half-plane, we get 

(2.4) 

Substituting (2.1)-(2.4) into (1.1) and integrating once with respect to x and using the 
boundary condition u(x ,  t )  -+ 0 as 1x1 + CO, we obtain the following bilinear equation 
for f :  

The solution of the equation (2.5) which involves N solitons is expressed as follows 
(Matsuno 1979): 

fN = det M (2.6) 
where M is an Id x N matrix whose elements are given by 

fie, + 1 for n = m 
I 

(2.7) 

with 

8, = V n b  - vnt- (2.8) 

where V,, and & ( n  = 1 , 2 , .  . . , N) are arbitrary constants and it is assumed that 
V,, # Vm for n # m. 

The first three of the solutions (2.6) are expressed as 

fl = id1 + 1 

f z =  -e ,ez+i (e ,+ez)+  Vlz 

f3 = - ie, ez e3 - (e, ez + ez e3 + e3 e,) 
+i(VZ36,+ v31&+ VlZe3)+ V12+ Vz3+ V3,-2 

with 

( 2 . 9 ~ )  

(2.9b) 

( 2 . 9 ~ )  

Vnm = [( Vn + Vm)( v n  - vm)-’Iz. (2.10) 

Note that fN--, = limv,+o f N ( n  = 1 , 2 , .  . . N). This is a remarkable property of the 
solution given by (2.6)-(2.8). 

The two-soliton solution readily follows from (2.1) and (2.9b) as 

(2.1 1) 

This expression will be used in § 3. 
At this stage it is interesting to check whether the solution (2.6) satisfies the 

assumption (2.3) for deriving (2.5). For this purpose we write the equation of motion of 
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x,,(t) in the following form: 

(n = 1 , 2 , .  . . , N ) .  
N 1  

+2i ~ 

d N 1  
-x,(t)=2i C - d t  , = I  X,-X, ,=1x,-x: 

(2.12) 
( s + n )  

This equation is derived easily by substituting the first expression from (2.4) into the 
equation (1.1) and putting the coefficients of [ ~ - x , ( t ) ] - ~  zero (Chen et a l  1979). By 
taking the imaginary part of the equation (2.12), we get 

(2.13a) 
d 
-1m x,(t) = G,(t) Im x,(t) 
dt  

where 

(2.13b) 
N Re(x, - x,) Im x, 

G,(t)=8 ,= {[Re(x, - x,)I2 + [Im(x, - x,)12}{[Re(xs - x,)I2 + [Im(x, + x,)I2)’ 
< s + n )  

Integrating the equation ( 2 . 1 3 ~ )  with respect to t yields 

Im x,(t) = Im x,(to) exp (2.14) 

where to is an arbitrary constant which has the meaning of an initial time. It is seen from 
(2.14) that the conditions (2.3) are satisfied if they hold at some time to. In the present 
case it is simple to take to = -CO. It is easy to show that (see I) 

I m x , ( - a ) =  l / V n  n = l , 2  , . . . ,  N. 

Thus, if we take V, > 0 (n = 1 ,2 ,  . . . , N ) ,  the conditions (2.3) are satisfied for the 
present N-soliton solution (2.6)-(2.8). 

Apart from real solutions, we can find other solutions. For example, if we assume a 
solution in the form 

i a  
u(x, t )  = - - In f(x, t )  

2i ax 
(2.15) 

with (2.2) and (2.3), then we obtain an equation for f as (in this case N may be infinite) 

(2.16) 

This equation is just a one-dimensional Schrodinger equation describing the motion of 
a free particle and is a linear equation, being different from the equation (2.5). To find 
the solution satisfying the conditions (2.3) will be done elsewhere. 

3. Interaction of two solitons 

Now let us proceed to the interaction of two solitons. To do so we rewrite the solution 
(2.1) in the following form: 

(3.1) 
Im x, (t)  ) =  f l N  1 1 

2i ,= x - x,(t) x - xx ( t )  
u(x, t ) = -  (-- 

,= 1 [x - Re x,(t)12 + [Im x,(t)12‘ 
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In this expression u ( x ,  t )  has 2N poles x l ( t ) ,  . . . , x N ( t ) ,  x? ( t ) ,  . . . , x%( t ) .  The equation 
(3 .1)  indicates that the nth soliton may be characterised by the motion of the pole x , ( t ) .  
The trajectory of x,(t) can be obtained directly from the exact N-soliton solution 
(2.6)-(2.8). It should be noted that Re  x ,  gives the centre position of the nth soliton and 
(Im x,)-' the maximum amplitude of the nth soliton. 

For a two-soliton case the poles x l ( t )  and x2 ( t )  are found from (2.96) as 

Vi+ V2 T+- a ( T ) +  V i S ~ - V t 5 i + ~  
2 v1 v2 

2 vi v2 

Xl( t )  = ~ 

2 

Vi+ Vz T-- x 2 ( t )  = ~ 

2 
a ( T ) +  V152-Vz51+~ Vi+ V2 b ( T )  

( 2 v 1 v 2  2 
where 

51 - 5 2  

vi- v2' T=t+------ 

( 3 . 2 ~ )  

(3.26) 

(3 .3a)  

(3.3b) 

(3.3c) 

In the following discussion we put S1 = t2 = 0 without loss of generality, so that T = t. 
For t-, *CO, a( t )  and b( t )  behave like 

b( t )  = ___ v2- V'+o( t -2 ) .  
v1 v2 

Substituting ( 3 . 4 ~ )  and (3 .4b)  into ( 3 . 2 ~ )  and (3 .2b) ,  we find 

1 
v1 

x l ( t ) =  Vlt+i-+O(t-') 

(3 .4b)  

(3.5a) 

(3.5b) 

The above results are also derived directly from the asymptotic expressions of u(x ,  t )  for 
t -, f CO (see I). If we regard solitons as stable particles located at the position of the 
poles we may introduce the time t, at which two solitons would collide. It is natural to 
define it such that the distance between two poles becomes a minimum. In the present 
case, the distance l ( t )  between two poles at the time t is given by 

~ ( t )  = Ix l ( t )  -x2(t)l = [a2 ( t )  + b2(t)]'12. (3.6) 
It is easy to see from (3.3a)-(3.3c) that Z(t) becomes a minimum when t = 0. Therefore 
it is interesting to elucidate the behaviour of poles near t = 0. 
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First of all, we define the following quantity D which will be seen later to 
characterise the nature of the interaction between two poles: 

where 

s = v,/ VI. (3.8) 

Note that V f D  decreases monotonically from CO to - 1 as s increases from 1 to CO (see 
figure 1). 

I 

Q 2 0 0 -  
N 

.s- 

- l O O C ,  I I I , , I I , , , , , 1 
0 00 L 00 8 00 12 00 

5 

Figure 1. Plot of V:D as a function of s( = v,/ vl). 

Now we investigate the behaviour of xl(t) and x Z ( t )  for small t in three cases: 

case A 

case A 

D = 0 (s = 3 + 2 h )  (3 .9b )  

case C 

D < 0 (s > 3 + 245). (3%) 

In the following analysis we describe the situation near t = 0 as we want to know the 
detailed process of the collisions of two solitons. 

Case A. 

a ( t )  = - 4 2  [ 1 + O(t”] Id ( 3 . 1 0 ~ )  
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1 
b( t )  ==ltJ[l +O(t2)]  (3.10b) 

J D  

x l ( t )  = ---dD-+iv,+O(t) 1 - - 1  

2 It1 v1 v2 

1 - t V,t- v, 
x z ( t )  = -JD-+ i- + O(e). 

2 14 Vl v2 

(3.1 l a )  

(3.1 16) 

We see from these expressions that x l ( t )  and x z ( f ) ,  especially Re xl(t)  and Re x 2 ( t ) ,  are 
discontinuous at t = 0. The minimum distance between two poles is given by 

I ( & )  = I(0) = D. (3.12) 

Figure 2 shows a two-soliton solution for various values of time. The parameters are 
given by 

v, = 1.0 V2=5.6 ! 5 = 8 2 = 0  D == 0-0814 

I ( f J  = I(0) = 0.285. (3.13) 

i r \  A 

-------- 
V-:/./e.-- ____-_--~---  / -‘\\\,\ --Y 

c 00 1-1 , I I , 7 I  I ,  I I I I ,  

-2 00 -1 00 0 cc 1 00 2 0 
Posit ion 

Figure 2. Plot of a two-soliton solution with VI = 1.0, V,  = 5 . 6 ,  6 ,  = t2 = 0 for various 
values of time. 

Figure 3 represents the motions of two poles for - 0 . 3 ~  t=z0.3. In figure 4 we plot 
Re x1 and Re x 2  as functions of t. We see from these figures that for D > 0 two poles 
interchange their velocities at the instant of the collision ( t  = 0), which reflects the 
discontinuities of Re x 1  and Re x 2  at t = 0 (see ( 3 . 1 1 ~ ~ )  and (3.11b)). 
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Case B. 

L 

a 

.- 

0 00 
-2 00 -1 00 0 00 100 2 00 

Real part of pole 

Figure 3. Plot of the motions of two poles for - 0 . 3 ~  rS0 .3 .  The arrow indicates the 
direction of the motion of the pole and two dots show the positions of two poles at t = 0. 
-: motion of x , ( t ) ,  -: motion of xZ( t ) .  

- 0 L O  L--L 
-2.00 -1 00 0 00 100 

Real part of pole 

Figure 4. Plot of Re x l ( t )  and Re x 2 ( t )  as functions of t. 

2 00 

( 3 . 1 4 ~ )  

(3.14 b )  
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( 3 . 1 5 ~ )  

(3.15b) 

Figures 5,6  and 7 show various plots corresponding to those of case A. The parameters 
are given by 

VI= 1.0 

D=O I(&) = Z(0) = 0. (3.16) 

We see from ( 3 . 1 5 ~ )  and (3.156) that two poles unite at t = 0, i.e. xl(0) = ~ ~ ( 0 ) .  This is 
shown by a dot in figure 6 .  Although the trajectories of two poles are continuous, they 
have a cusp at t = 0 (see figure 6 ) .  

Case C. 

Vz = 3 + 2JZ = 5.8 3 51 = 5 2  = 0 

a ( t ) =  - vz)2 L [ l + O ( t Z ) ]  
ViVz J - D  

( 3 . 1 7 ~ )  

b ( t )  = Jz[l + 0 ( t 2 ) ]  (3.17b) 

Vl+ vz (VI-- vz)2 1 

x,(t) = (-+ v , + v z  (V1-VJ2 1 
2 

( 3 . 1 8 ~ )  

(3.18b) 

l( tJ = Z(0) = -D.  (3.19) 

Posit i on 

Figure 5. Plot is the same as figure 2 except V, = 3 + 2J/2. 
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Real part of pole 

Figure 6, Plot is the same as figure 3 except V, = 3 + 2J2 

- 

- 2  00 -1 00 0 00 100 2 00 
Reo1 pari of pole 

Figure 7. Plot is the same as figure 4 except V,  = 3 + 242. 

Figures 8, 9 and 10 show various plots corresponding to those of case A. The 
parameters are given by 

v, = 1.0 Vz = 6.0 51 = (2 = 0 D = - 0.0544 

I ( & )  = I(0) -- 0-233. (3.20) 
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Posit ion 

Figure 8. Plot is the same as figure 2 except V2 = 6.0. 

. 

O o O t - 7 - - - - - T - T - - - ~ l - - - - T - T 1 - 7 -  I , 4 I , I , 
-2 00 -1 00 0 00 100 2 

Real part of pole 

Figure 9. Plot is the same as figure 3 except V2 = 6.0. 

From these figures we find that the trajectories of two poles are continuous and have no 
cusps for all times and this point makes a clear difference between case A and case C. 
Note also that d/dt  Re  x l ( t )  which represents the speed of the smaller soliton becomes 
zero at two times (from figure 10 these times are seen to be about zt0.03) and has a 
minimum value at t = 0, which is given by 

d d VI+ vz (v,-v2g2 1 
d t  d t  2 2v1v2 J-D 

min-Re xl(t)=-Re ~~(t)(,=~=----------- (3.21) 
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-2 00 -1 00 0 00 100 2 00 
Real part of pole 

Figure 10. Plot is the same as figure 4 except V,  = 6.0. 

where we have used ( 3 . 1 8 ~ ) .  This minimum value is - 5.4 in the present example. On 
the other hand, d/dt  Re x z ( t ) ,  which represents the speed of the larger soliton, never 
becomes zero and has the following maximum value at t = 0: 

v , +  v2 (VI- v2)2 1 + max - Re xZ(t) =-Re ~ ~ ( t ) l ~ = ~  = ~ 

d d 
dt  d t  2 2V1V2 J T D  

(3.22) 

where we have used (3.18b). In the present example (see (3.20)) this maximum value is 
12-4. 

It should be pointed out here that although the process of the interaction of two 
solitons is very different for the three cases, the profiles of the two-soliton solutions 
obtained are similar to one another, i.e. they have only one peak at the instant of the 
collision (see figures 2 ,5  and 8). The profile of the two-soliton solution at t = 0 is found 
from (2.11) with t1 = e2 = 0 as 

v1 V2( v1+ V2)X2 + (V1+ V2) v12 
u(x ,  0) = 2 2 ’  (V,V2x2- v12)2+(v,+ V2) x 

(3.23) 

This function has different profiles depending on the values of a parameter s = V2/ V1. 

( a )  

5+JZ 
1<s<-=4*79 

2 
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max ~ ( x ,  0) = U( * xo, 0) 

(s - 1), S 
= VI----- 

s + 1 ( -  s2+6s - 1 ) 1 / 2 [ 2 ~ 1 ' 2 -  ( -  s ' + ~ s  - 1)112] 

where 

1 1 s + l  [ (, - s ~ + ~ ~ s  - 1) ' I 2 -  1] ' I 2  
XO = - -- - 

v1Jss-1 

1531 

(3.24) 

(3.25) 

(s - 1)2 
max ~ ( x ,  0) = u(0,O) = V1-. (3.26) 

s + l  

It is interesting to note that for 1 < s < 3 + 245 the positions ofsaximum values_of 
~ ( x ,  0) become f xo (for 1 < s < ( 5  + 4 2 1 ) / 2 )  and 0 (for (5  + J 2 1 ) / 2  < s < 3 + 242) .  
These positions do not coincide with the positions of maximum values of two solitons 
given by 

4 0  1 1 s + l  
2 VJss-1 

Rexl(-O)=-=---=- 

JO 
Rex2( -0 )=  -- 

2 

( 3 . 2 7 ~ )  

(3.276) 

where 

xo<Re xl(-O) f o r s > l .  (3.28) 

However, the process of the interaction of two sqlitons for 1 < s < ( 5  + J 5 ) / 2  is not 
substantially different from that for 1 < s < 3 + 242 as has already been shown in case 
A.  The circumstances mentioned above are explained in figures 11, 12 and 13, where 
various plots corresponding to those of case A are given. The parameters are 

v1= 1.0 V2 = 4.6 51 = 5 2  = 0 D = 0.622 

I ( & )  = I(0) = 0.789. (3.29) 

It follows from (3.24), (3.25), ( 3 . 2 7 ~ )  and (3.276) that 

XO = 0.2 15 

Re xl( -0)= -Re x2(-0) = 0.394. 

max ~ ( x ,  0) = U( *xo, 0 )  = 2.33 
(3.30) 

To summarise, the nature of the interaction of two solitons can be divided into two 
classes depending on the initial amplitudes of two solitons as follows. 

For V1 < V2 < (3  + 242)  V1, as the time goes from - 00 to 00, the amplitude of the 
larger soliton decreases from V2 to VI while the amplitude of the smaller one increases 
from V1 to V2, in which case two solitons interchange their velocities at the instant of 
the collision withoutqassing through each other (see figures 3 and 4) .  

For V, > (3  + 242)  V1, on the other hand, the larger soliton first absorbs the smaller 
one and then emits the smaller one backward, which is clear from the fact that the speed 
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600. 

Y Matsuno 

-2 GO -100 0 00 100 2 
Position 

Figure 11. Plot is the same as figure 2 except V, = 4.6. 

080 
L : I  

G 

7 1 1  1 I I 

.2 00 -1 00 0 00 100 2 00 
Real part of pole 

Figure 12. Plot is the same as figure 3 except V2 = 4.6.  

of the smaller soliton becomes negative for some range of time (see figure 10, in which 
example this range is - 0.03 G t s 0.03). Thus, in this ease two solitons pass through 
each other. 

4. Linearised Benjamin-Ono equation 

As has already been mentioned, the behaviour of the tail is well known thanks to the 
inverse scattering method in the case of the KdV equation. Since this method cannot be 
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- T - l I !  I , , ,  I I , , ,  

-2 00 -1 00 0 00 100 2 00 
Real part of pole 

Figure 13. Plot is the same as figure 4 except V, = 4.6.  

applied to the B-0 equation as yet, we must resort to other methods to study the 
structure of the tail. One of them may be to study the solution of the linearised B-0 
equation, 

because the amplitude of the tail is small it may be described by the linearised B-0 
equation (4.1) in the first approximation. 

In this section, we consider the initial-value problem of the equation (4.1) and derive 
the asymptotic expression of u(x ,  t )  for both large x and t. 

Now the solution of the equation (4.1) can be represented by the Fourier integral as 
foliows: 

m 

u(x ,  t )  = v ( k )  exp(i[kx - w ( k ) t ] )  dk. (4.2) I, 
If we substitute (4.2) into (4,1), we can determine the functional form of w ( k )  as 

w ( k ) =  - klkl (4.3) 

where we have used the formula 

(4.4) 

The unknown function u(k) is determined from the initial value of u ( x ,  t )  as follows; 
4 
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On introducing (4.3) and (4.5) into (4.2), we get the general solution of the equation 
(4.1) as 

~ ( x ,  t ) = - I  1 O c a ;  I-05exp(i[k(x-y)+klkltl}u(y,0)dk dy 
2~ -m 

where 

C ( x )  = lox cos(5t2) dt  S ( x )  = lox sin( ; t2)  dt. 

The function K ( x )  has the following asymptotic representation: 

(4.9a) 

(4.96) 

Now let us examine the asymptotic form of (4.6j at large values of t on the 
assumption that the initial perturbation vanishes rapidly when 1x1 +CO. Then, we can 
express K [ ( x  - y)/2Jt] in the form of a power series in y. It follows readily from (4.6) 
that 

where 

(4.10) 

(4.11) 

(4.12) 
d" 
dx 

K'"'(x) = - K ( x ) .  

Substituting into (4.10) the asymptotic expression for the derivatives of K ( x )  

-(- 1)" ( n  +2)! 
K'"'(x) - J2/T,- Xn+3 (X+ + C O )  

K'"'(x) - JT(2X)" cos x2--+- 
( 4 2  

and using the Fourier transform of u(x, 0) 

we get as x/Ji+ ---a3 

u(x, t ) - 2 J T t R e  

(4.13 a )  

(4.13 b) 

(4.14) 

(4.15) 
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As x/Jt+  CO, on the other hand, we have 

(4.16) 

For l x l /Jk  1 and large values of t, we can approximate the solution by the first 
non-vanishing term in (4.10). Thus, we get 

(4.17) 

Finally we take, as an example, the S function initial condition: 

u(x ,  0) = S(x). (4.18) 

The solution for t > 0 is obtained from (4.6) as 

For Ix/Ja +CO, we have, from (4.9~) and (4.9b), 

(4.19) 

1 L  
u(x ,  t) --- 

7rJt ( x / J j  
for x/&+ +CO 

u ( x ,  t)--zcos(:-:) 1 for x / J t +  -W. 

(4.20) 

(4.21) 

These asymptotic behaviours are special cases of (4.15) and (4.16). 

5. Concluding remarks 

In the preceding sections, we have studied the detailed process for the interaction of two 
solitons. Similar analysis may be carried out for the interaction of N( 2 3) solitons by 
using the explicit N-soliton solution given by (2.6)-(2.8), which will be done elsewhere. 
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